16/06/2021

Le retour des moteurs à rotors ouverts !

IMG_7075.jpeg

Les moteurs à rotors ouverts ne sont en soi pas nouveaux, dans les années 80 déjà des essais avaient été réalisés. Puis abandonné notamment pour des questions de réduction de bruit, une nouvelle génération tente maintenant de revenir sur le devant de la scène.

Projet RISE

Les motoristes General Electric Aviation et Safran ont lancé en début de semaine un programme de démonstration et de maturation technologique dans le cadre de leur coentreprise CFM pour une famille de moteurs à rotor ouvert qui fonctionneraient soit au carburant d'aviation durable (SAF) à 100 %, soit à l'hydrogène liquide d'ici le milieu de la prochaine décennie. Baptisé Rise (Revolutionary Innovation for Sustainable Engines), le programme de développement vise une amélioration de 20 % de la consommation de carburant et des émissions de CO2 par rapport à la famille CFM Leap actuelle.

CFM prévoit des essais au sol sur des modules moteurs dans les installations de GE et de Safran à partir du milieu de cette décennie, suivis d'essais en vol sur un banc d'essai GE « peu après », selon Olivier Andriès, PDG de Safran, qui, avec le directeur général de GE Aviation, John Slattery ont organisé un briefing en ligne au cours duquel ils ont également annoncé la prolongation du partenariat CFM jusqu'en 2050.

Andriès a souligné que l'annonce de Rise n'équivalait pas à un lancement de moteur mais plutôt à un engagement formel à poursuivre les études pour un successeur de Leap sur lequel GE et Safran collaborent depuis 2019. Apparaissant également à l'événement en ligne, le vice-président de l'ingénierie de GE Aviation, Mohamed Ali a qualifié l'objectif de 20 % de consommation de carburant et de réduction de CO2 de "l'amélioration la plus importante" que les entreprises aient jamais réalisée. Les technologies à l'étude comprennent les avancées en matière d'architecture et de matériaux ainsi que l'électrification hybride pour les systèmes moteur et cellule.

Une équipe d'ingénierie conjointe GE-Safran a défini ce que les entreprises appellent une feuille de route technologique complète, comprenant des aubes de ventilateur composites, des alliages métalliques résistant à la chaleur, des composites à matrice céramique (CMC) et la fabrication additive. Le programme Rise comprend plus de 300 composants, modules et versions complètes de moteurs.

Le concept

Les deux motsoristes prévoient d'utiliser un seul rotor dans leur plan, par opposition aux conceptions contrarotatives envisagées dans les études antérieures, y compris l'UDF de General Electric dans les années 1980 et plus récemment, les études à rotor ouvert de Safran développées dans le cadre du programme de recherche européen Clean Sky en 2017.

View-of-the-General-Electric-UDF-R-mounted.png

"Nous avons récemment pu utiliser ces apprentissages, dans les deux entreprises, en plus d'une utilisation considérable de la puissance de calcul qui est devenue plus récemment disponible", a ajouté Ali. « Et maintenant, nous sommes en mesure d'en faire un seul ventilateur… et de concevoir des pales spécialement pour cela. Cela réduit non seulement le poids et réduit la complexité ; cela augmente l'efficacité et crée le même confort du point de vue du bruit auquel tous les passagers se sont habitués. Andriès a ajouté que cette conception à rotor ouvert n'entraînerait pas plus de bruit - ni à l'intérieur ni à l'extérieur - que le Leap d'aujourd'hui.

IMG_7074.jpeg

Photos : 1 & 3 Projet RISE 2 L’UDF des années 80 @ CFM

 

14/06/2021

Airbus prépare les réservoirs de l’avion à hydrogène !

unnamed.jpg

Airbus a décidé de concentrer ses efforts en matière de réservoirs métalliques à hydrogène en créant deux Centres de Développement Zéro-Emission (ZEDC) complémentaires, sur ses sites de Brême (Allemagne) et de Nantes (France). L'objectif des ZEDC est de fabriquer des réservoirs cryogéniques à des coûts compétitifs afin de réussir le lancement de l’avion ZEROe sur le marché et d'accélérer le développement des technologies de propulsion à l'hydrogène. La conception et l'intégration des réservoirs sont cruciales pour les performances d'un futur avion à hydrogène. 

Les développements technologiques couvriront l'ensemble du produit et des équipements industriels, des pièces élémentaires à l'assemblage, en passant par l'intégration des systèmes et les essais cryogéniques sur les réservoirs d'hydrogène liquide (LH2). Les deux ZEDC seront pleinement opérationnels d'ici 2023 pour construire ses réservoirs LH2, le premier essai en vol étant prévu pour 2025.

Airbus a choisi le site de Brême en raison de sa configuration diversifiée et de ses décennies d'expérience en matière de LH2 au sein de Defence and Space et d'ArianeGroup. Le ZEDC de Brême se concentrera dans un premier temps sur l'installation système ainsi que sur l'ensemble des tests cryogéniques des réservoirs. En outre, ce ZEDC bénéficiera de l'écosystème plus large de la recherche sur l'hydrogène, tel que le Centre pour les Matériaux et les Technologies Éco-efficaces (ECOMAT), et d'autres synergies provenant des activités spatiales et aérospatiales.

Le site d’Airbus à Nantes a été sélectionné en raison de ses compétences approfondies en matière d’intégration de structures métalliques liées au caisson central de voilure, ce dernier servant parfois de réservoir central, critique pour la sécurité des avions commerciaux. Le site de Nantes apportera sa maîtrise dans un large éventail de technologies métalliques et composites et d’intégration. Son expérience en co-design sur les entrées d'air de nacelles, les radômes et les ensembles structuraux complexes du fuselage central est un réel atout. Le ZEDC bénéficiera des compétences et des infrastructures du Technocentre de Nantes, soutenu par un écosystème local innovant tel que l'IRT Jules Verne.

Conformément aux ambitions des régions d'Allemagne du Nord et des Pays de Loire, Airbus encourage la collaboration industrielle pour soutenir la transition globale vers les technologies de propulsion à l'hydrogène, ainsi que les filières associées dans les régions.

Le réservoir est un composant critique pour la sécurité. Une ingénierie système spécifique est nécessaire. L’hydrogène est plus complexe à utiliser que le kérosène car il doit être stocké à -250 °C pour se liquéfier. La liquéfaction est nécessaire pour augmenter la densité. Pour l'aviation commerciale, le défi consiste à développer un composant capable de résister aux cycles thermiques et de pression répétés qu'exige une application aéronautique.

Dans un premier temps, les réservoirs à hydrogène destinés à l’aviation commerciale seront métalliques. Une évolution vers des structures composites carbone est envisageable à plus long terme. 

Photo : Futurs avions à hydrogènes @ Airbus

 

10/05/2021

L’eFlyer 800 entièrement électrique !

800-2-1080x675.jpg

Il ne se passe bientôt plus une semaine sans qu’un nouveau projet d’avion électrique ne soit dévoilé. Aux Etats-Unis, s’est la petite société Bye Aerospace qui propose son projet nommé eFlyer 800.

Bye Aerospace propose un avion de classe bi-turbo-propulseur tout électrique à huit places, l'eFlyer 800 ™, en réponse à la demande croissante d'avions régionaux tout électriques avec des coûts d'exploitation considérablement réduits.

Selon Bye Aerospace, l'eFlyer 800 devrait atteindre une vitesse de croisière jusqu'à 320 nœuds, un plafond de 35’000 pieds et une autonomie de 500 nm avec des réserves IFR de 45 minutes à une vitesse de croisière normale de 280 nœuds. Les caractéristiques de sécurité comprennent deux moteurs électriques montés sur les ailes, chacun avec deux enroulements de moteur redondants, des blocs-batteries quad-redondants et un parachute d'avion complet. Les caractéristiques potentielles supplémentaires incluent un système d'atterrissage automatique d'urgence, un algorithme intelligent assurant la protection de l'enveloppe, l'évitement du terrain et le routage pour l'atterrissage automatique d'urgence, ainsi qu'une option pour des cellules solaires à alimentation supplémentaire et un taxi électrique intégré aux roues. La configuration à 8 sièges de l’avion comprend jusqu’à sept passagers et un ou deux pilotes. L'eFlyer 800 n'aura qu'un cinquième des coûts d'exploitation des turbopropulseurs traditionnels et est destiné aux marchés du taxi aérien, du fret aérien, des avions régionaux et des vols nolisés.

Partenariat avec Safran :

Bye Aerospace est en partenariat avec le motoriste français Safran. Ensemble, ils évaluent le groupe motopropulseur électrique le plus efficace pour l'eFlyer 800 (deux moteurs électriques ENGINeUS ™ et système de distribution électrique et de protection du réseau GENeUSGRID ™). « Les gammes de produits Safran avec les moteurs ENGINeUS ™, de 50kW à 500kW / 1MW et les systèmes GENeUSGRID ™, s'intègrent parfaitement avec le portefeuille d'avions électroniques Bye Aerospace», a déclaré Hervé Blanc, vice-président exécutif et directeur général Power chez Safran Electrical & Pouvoir. « Forts de notre coopération fructueuse sur eFlyer2 et eFlyer4, nous sommes très fiers d'apporter notre meilleure expertise pour soutenir Bye Aerospace dans la conception du nouvel eFlyer 800 ». 

Bye Aerospace :

Basée à l'aéroport Centennial près de Denver, au Colorado, Bye Aerospace se spécialise dans la conception et la fabrication d'avions électriques, y compris la famille d'avions eFlyer. Bye Aerospace, nommée « Petite entreprise de l'année 2020 » par la chambre de commerce Aurora, au Colorado et reconnue comme « la plus innovante » dans le cadre des prix Made in Colorado 2020 parrainés par le magazine ColoradoBiz, a été fondée par George E. Bye, qui est également président-directeur général.

800-1-scaled.jpg

Photos : l’eFlyer 800 @ Bye Aerospace

18/03/2021

Nouvelle étude à grande échelle sur les biocarburants !



unnamed-1.jpg

Airbus, le centre de recherche Allemand DLR, le motoriste Rolls-Royce et le producteur de carburant durable d’aviation Neste, se sont associés pour lancer une étude sur l’Impact des carburants de substitution sur les émissions et le climat" ("ECLIF3), l’objectif étant d'étudier les effets d’un carburant 100% durable sur les émissions et les performances des avions. 

Les résultats de l'étude, réalisée au sol et en vol à l'aide d'un Airbus A350-900 équipé de moteurs Rolls-Royce Trent XWB soutiendront les efforts actuellement déployés par Airbus et Rolls-Royce permettant de s'assurer que le secteur de l'aviation est prêt pour l'utilisation de SAF à grande échelle, dans le cadre du programme de décarbonation de l'industrie.

Débuts des essais :
 

Des essais moteurs, incluant un premier vol pour vérifier la compatibilité opérationnelle de l'utilisation de SAF à 100% avec les systèmes de l'avion, ont eu lieu dans les installations d'Airbus à Toulouse, France, cette semaine. Ces essais seront suivis par des tests sur les émissions en vol qui débuteront en avril et reprendront à l’automne, utilisant un Falcon 20-E du DLR pour effectuer des mesures visant à étudier l'impact de l’usage de SAF sur les émissions. Entre-temps, d'autres tests au sol mesurant les émissions de particules sont prévus pour indiquer l'impact environnemental de l'utilisation de SAF sur les opérations aéroportuaires.

Les essais en vol et au sol compareront les émissions provenant de l'utilisation de 100% de SAF produit par la technologie HEFA (esters et acides gras hydroprocédés) à celles du kérosène fossile et des carburants à faible teneur en soufre.

Le SAF sera fourni par Neste, l'un des principaux fournisseurs mondiaux de carburant  durable d’aviation. Des mesures et analyses supplémentaires pour la caractérisation des émissions de particules pendant les essais au sol seront fournies par l'université britannique de Manchester et le Conseil national de la recherche du Canada.

"Le SAF est un axe essentiel de l'ambition d'Airbus de décarboner l'industrie aéronautique et nous travaillons en étroite collaboration avec un certain nombre de partenaires pour assurer un avenir durable au transport aérien", a déclaré Steven Le Moing, responsable du programme des énergies nouvelles chez Airbus. "Les avions ne peuvent actuellement fonctionner qu'avec un mélange de 50% maximum de SAF et de kérosène fossile; cette collaboration permettra non seulement de comprendre comment les moteurs à turbine à gaz fonctionnent avec 100% de SAF en vue de leur certification, mais aussi, d'identifier les réductions d'émissions potentielles et les avantages environnementaux liés à l'utilisation de ces carburants en vol sur un avion commercial.

Le Dr Patrick Le Clercq, responsable du projet ECLIF au DLR, a déclaré: "En étudiant le 100% SAF, nous portons nos recherches sur la conception des carburants et l'impact de l'aviation sur le climat à un niveau supérieur. Lors de campagnes de recherche précédentes, nous avons déjà été en mesure de démontrer le potentiel de réduction de la suie générée en passant de 30 à 50% de mélanges de carburants alternatifs, et nous espérons que cette nouvelle campagne confirmera que ce potentiel est encore plus important.

Le DLR a déjà mené des recherches approfondies sur l'analyse et la modélisation, ainsi que des essais au sol et en vol avec des carburants alternatifs à l'aide de l'avion de recherche Airbus A320 ATRA en 2015 et en 2018, en collaboration avec la NASA."

Simon Burr, directeur du développement des produits et de la technologie, Rolls-Royce Civil Aerospace, ajoute: "Dans notre monde post-COVID-19, les gens voudront à nouveau se connecter, mais de manière durable. Pour les voyages longues distances, nous savons que cela impliquera l'utilisation de turbines à gaz pour les décennies à venir. Le SAF est essentiel à la décarbonation de ces déplacements et nous soutenons activement l'augmentation de sa disponibilité pour l'industrie aéronautique. Cette recherche est essentielle pour soutenir notre engagement à comprendre et à permettre l'utilisation de 100% de SAF comme solution à faibles émissions”.

Jonathan Wood, vice-président de Neste pour l'Europe, chargé de l'aviation renouvelable, a ajouté: "Nous sommes ravis de contribuer à ce projet visant à mesurer les avantages considérables du SAF par rapport au carburant fossile et de fournir les données nécessaires pour soutenir l'utilisation du SAF à des concentrations supérieure à 50%. Une étude indépendante a montré que le carburant d’aviation durable Neste MY 100% permettait de réduire de jusqu’à 80% les émissions de gaz à effet de serre par rapport à l'utilisation de carburant fossile lorsque toutes les émissions liées au cycle de vie sont prises en compte ; cette étude permettra de clarifier les avantages supplémentaires découlant de l'utilisation du SAF."
 

ECLIF & ACCES :

L’utilisation de biocarburant dans l’aviation est en soi une évidence, pour autant que ce dernier puisse être produit de manière durable (compost, déchets ménagers, vieilles huiles). Mais il reste un détail qui a son importance, la validation scientifique de l’usage des biokérosènes. Pour ce faire des projets de recherches et d’analyses comme ECLIF et ACCES doivent prouver le bienfondé de ce type de carburant alternatif. Ces deux études vont venir renforcer les données déjà en possessions des scientifiques et permettre de nouvelles améliorations dans ce domaine.

Un mélange de biocarburants réduit les émissions de particules de noir de carbone d’un vol de croisière de 50 à 70 % par rapport à la combustion du kérosène de type fossil. C’est ce que démontre une étude parue dans la revue spécialisée NATURE, fondée sur les vols de mesure menés conjointement par la NASA, le Centre allemand pour l’aéronautique et l’astronautique (DLR) et le National Research Council (NRC) canadien. Les résultats révèlent tout d’abord d’importantes indications sur la manière dont les biocarburants peuvent contribuer à un développement respectueux de l’environnement dans le transport aérien.

Les moteurs des avions émettent des particules de noir de carbone. Elles agissent comme des germes de condensation dans des petits cristaux de glace qui deviennent alors visibles comme traînées de condensation. Ces dernières peuvent perdurer, en cas de conditions humides et froides, à une altitude d’environ huit à douze kilomètres et former des nuages d’altitude. Ces cirrus de traînées de condensation, ainsi dénommés, ont aujourd’hui un impact aussi important sur le climat dans l’atmosphère que toutes les émissions de dioxyde de carbone réunies, celles-ci induites par l’aviation sur plus de 100 ans. Les émissions de particules de noir de carbone déterminent le nombre de cristaux de glace dans les traînées de condensation. Avec la possibilité d’utiliser les biocarburants pour réduire de plus de la moitié les émissions de noir de carbone résultant de l’échappement du moteur, une voie s’ouvre pour diminuer l’incidence climatique engendrée par les traînées de condensation.

Aux États-Unis, les scientifiques du DLR de l’Institut de la physique de l’atmosphère ont effectué des mesures du gaz d’échappement, avec un Falcon, à une distance de 30 à 150 mètres d’un DC 8 de recherche de la NASA. À cet effet, les réacteurs du DC 8 ont été utilisés pour une comparaison alternée entre le kérosène ordinaire Jet A1 et un mélange pour moitié de Jet A1 et du biocarburant HEFA (Hydroprocessed Esters and Fatty Acids). Les mesures réalisées antérieurement n’avaient fourni que des informations sur la formation du noir de carbone dans les biocarburants utilisés au sol, étant entendu qu’en configuration de vol, d’autres conditions environnementales prévalaient. La campagne passée d’essais en vol menée depuis le Armstrong Flight Research Center de la NASA faisait partie du projet de recherche ACCESS (Alternative Fuel Effects on contrails and Cruise Emissions Study), auquel le DLR et le NRC Canadien ont pris part.

Depuis près de 20 ans, le DLR et la NASA travaillent ensemble dans le domaine de la recherche atmosphérique. Dans la recherche aéronautique, les deux partenaires se sont engagés, notamment pour des projets de recherche communs dans les domaines de la gestion du transport aérien et des vols à faibles émissions et peu bruyants. Une étroite collaboration pour la recherche sur les émissions du biocarburant est également projetée dans l’avenir.

unnamed.jpg

Photos : l’Airbus A350-900 flightLab @Airbus

 

02/03/2021

Spirit of Innovation, l’avion électrique de Rolls-Royce !

32.jpg

Le motoriste Rolls-Royce spécialisé dans les moteurs d’avions travaille sur un projet d’avion électrique à haute performances qui répond au joli nom de « Spirit of Innovation ». Ce projet fait partie d'une initiative appelée Accelerating Flight Electrification (ACCEL). La moitié du projet est financé par l'État par l'intermédiaire de l'Institut de technologie aérospatiale (ATI), en partenariat avec le ministère britannique des affaires, de l'énergie et de la stratégie industrielle ainsi qu'Innovate UK.

Pour l’équipe constituée par Rolls-Royce, l’avion électrique « Spirit of Innovation » de type zéro émission doit atteindre des records avec une vitesse cible, de plus de 300 km/h plus tard cette année déjà. Cette initiative en vue d’accélérer le développement d’une aviation plus respectueuse de l’environnement fait partie d’un programme de recherche de type STEM (science, technology, engineering and mathematics in an interdisciplinary and applied approach).

Ce volet du programme national est centré sur le vol, l'électricité, le recyclage et l'énergie durable. De fait, les ressources proviennent d’élèves de 6e année (3 à 11 ans) et différentes personnes de la société civile. Comme ils sont libres, les parents, les soignants, les enseignants, les éducateurs à domicile, les ambassadeurs STEM et les enfants curieux y ont accès. Ces ressources ont été conçues pour utiliser les ressources quotidiennes de la classe et de la maison. A la base, il s’agit de faire intervenir les différentes idées pour finalement concrétiser de nouvelles approchent qui permettent au final de révolutionner un domaine.

En partant de cette approche Rolls-Royce est parvenu à présenter son prototype d’avion électrique dans un temps record. En fin de semaine dernière le « Spirit of Innovation » a terminé les tests de roulage, se rapprochant ainsi de son vol inaugural. L'avion a démontré qu’il était capable de rouler par ses propres moyens le long d'une piste, propulsé par son groupe motopropulseur électrique de 500 chevaux. L'avion devrait prendre son envol pour la première fois au printemps prochain.

Pour atteindre son objectif ambitieux, Rolls-Royce s'est allié à deux sociétés britanniques : YASA, fabricant de moteurs électriques légers et de haute puissance, et Electroflight, une start-up spécialisée dans les groupes motopropulseurs électriques haute performance, y compris les systèmes de stockage d'énergie. Rolls-Royce estime qu'à pleine puissance, la combinaison du groupe motopropulseur électrique de 500 ch (400 kW)et d'un système de batterie avancé propulsera l'avion à plus de 300 mph, établissant un nouveau record mondial de vitesse pour le vol électrique.

12.jpg

Photo : Le Spirit of Innovation @ Rolls-Royce