20/02/2020

Modernisation des PC-21 & FLORAKO !

pc-21-swiss-air-force-switzerland.jpg

Dans le cadre du programme d’équipement militaire 2020, deux sujets concernent notre aviation, la mise à jour des avions écoles Pilatus PC-21 et celle du programme C2Air pour le système FLORAKO.

Mise à jour des Pilatus PC-21 :

Suite aux programmes d’armement 2006 et 2010, huit avions PC-21 ont été acquis auprès de l’entreprise Pilatus, à des fins d’instruction. Cet avion turbopropulsé est destiné à l’instruction des pilotes sans expérience préalable sur jet, pour qu’ils puissent à terme directement passer à un avion de combat tel que le F/A-18 E/F « Hornet ». L’instruction sur PC-21 est sensiblement moins coûteuse et plus écologique que sur jet d’entraînement.

Cependant, comme ses pièces de rechange ne sont plus commercialisées (version initiale de l’avion) et que les autres forces aériennes n’utilisent pas la même configuration que celle employée actuellement, des adaptations s’imposent sur ces avions comme sur leurs simulateurs. Aujourd’hui, les PC-21 des Forces aériennes suisses comportent des composants qui ne sont plus utilisés dans les autres flottes de ce modèle. À terme, il ne sera plus possible d’assurer l’entretien et la maintenance de ces composants. La maintenance des aéronefs devient de plus en plus complexe et onéreuse. Il n’est d’ailleurs pas exclu que d’autres fabricants cessent de fournir leurs prestations, d’autant plus qu’une petite flotte représente peu d’intérêts économiques pour ces entreprises.
Le système d’instruction PC-21 de Pilatus a fait l’objet de développements constants au cours des dix dernières années. Dans le cadre des mesures planifiées, les Forces aériennes suisses appliqueront des processus d’amélioration du système développés pour les forces aériennes australiennes et pourront bénéficier d’un stock de pièces de rechange partagé. L’Armée de l’air française reprend la même configuration pour son PC-21.

pc-21-cockpit.jpg

Cet ensemble de mesures comprend également l’adaptation aux spécificités de la Suisse telles que sa topographie et la densité élevée de son trafic aérien. Grâce à l’intégration d’un système de détection des obstacles (G-CAS) et d’un système de signalisation du trafic aérien (T-CAS), la sécurité de vol sur le PC-21 sera considérablement accrue. Indispensable dans un environnement d’entraînement moderne, ces deux systèmes de sécurité préviennent les crashes et les collisions avec d’autres aéronefs. Une grande partie des frais de développement et d’autorisation pour chacun des systèmes de la nouvelle configuration ont déjà été couverts et ne sont pas compris dans le crédit. Les mesures assureront l’adaptation aux exigences militaires et civiles actuelles et maintiendront ces avions en état de navigabilité jusqu’à fin 2035.

Environ les trois quarts des PC-21 utilisés actuellement à travers le monde possèdent la même configuration que celle préconisée dans la solution proposée. Ainsi, les Forces aériennes suisses pourront profiter de conditions plus favorables lors des travaux de maintenance. De même, elles rempliront les exigences actuelles en matière d’aéronautique et s’adapteront aux normes de sécurité en vigueur.

C’est l’avionneur suisse Pilatus Aircraft qui aura la charge de mettre à jour la flotte de PC-21.

Modernisation C2Air pour le système FLORAKO :

previewHigh.jpeg

Dans le cadre d’Air2030, nous avons beaucoup parlé d’avions et de systèmes sol-air, mais il fallait aussi moderniser le système de surveillance et de conduite, le choix est fait. L’évaluation des trois candidats au nouveau système de surveillance de l’espace aérien et de conduites des opérations aériennes pour l’Armée suisse s’est conclue avec le choix du type de dispositif. La direction du programme Air2030 a suivi la recommandation de l’équipe d’experts en faveur du candidat français Thales avec le système Skyview.

Le remplacement du système de conduite et de communication de Florako (projet Radar) fait partie du paquet de projets pour le renouvellement des moyens de protection de l’espace aérien, comme le renouvellement des systèmes de capteurs de Florako, l’acquisition de nouveaux avions de combat (projet PAC) ainsi que celle d’un système de défense sol-air de longue portée (projet DSA). Le projet Radar a déjà été décidé dans le cadre des programmes d’armement 2016 et 2018. Le remplacement des capteurs est en cours.

Introduit en 2004, le système de surveillance de l’espace aérien et de conduite des opérations aériennes Florako assure 24 heures sur 24 et sept jours sur sept la reconnaissance des aéronefs civils et militaires (avions, hélicoptères, drones) et permet aux Forces aériennes de mener leurs engagements en situation ordinaire comme en cas de tensions accrues, voire de conflit. Sans lui, les avions de combat et autres moyens de défense sol-air ne pourraient être engagés, ou seulement de manière très limitée. Il en va de même pour les appareils à acquérir en vue du renouvellement des moyens de protection de l’espace aérien.

20180442.jpg

Le projet « C2Air » prévoit le remplacement des sous-systèmes Ralus/Lunas du système actuel de surveillance de l’espace aérien et de conduites des opérations aériennes des Forces aériennes suisses. Au cours des douze derniers mois, des spécialistes d’armasuisse et de l’Armée suisse ont testé en Suisse trois systèmes de remplacement venus de trois pays différents, évalué les offres reçues et formulé une recommandation à la direction du programme Air2030 dans un rapport d’évaluation. Le directeur général de l’armement a maintenant suivi cette recommandation et attribué le marché au candidat français Thales avec le système Skyview. Thales a été retenu en raison de son meilleur rapport qualité-prix. Par ailleurs, Skyview est le système qui s’avère répondre le mieux aux exigences. Il est prévu que le Conseil fédéral soumette l’acquisition de ce système au Parlement dans le message sur l’armée 2020. Les autres candidats étaient Saab (Suède) et Raytheon (États-Unis). Le constructeur et le système retenus ne causent aucun préjudice aux autres projets PAC et Bodluv du programme Air2030.

Système de surveillance de l’espace aérien et de conduite des opérations aériennes Florako Ralus (Radar-Luftlage-System) rassemble les données radar et établit l’image de la situation aérienne. Lunas (Luftlage-Nachrichtensystem) reproduit toutes les données à l’écran afin de soutenir la conduite de l’engagement. 

Ces deux sous-systèmes font partie du système de surveillance de l’espace aérien et de conduite des opérations aériennes Florako. Ce dernier est destiné à identifier les objets aériens civils et militaires (p. ex. avions, hélicoptères et drones) et à conduire les engagements des Forces aériennes, y compris la défense sol-air. Depuis 2005, l’espace aérien suisse est surveillé 24 heures sur 24 par Florako. 

Principales caractéristiques:

  • Une large communauté d’utilisateurs de la force aérienne de 12 pays représentant au total 43 centres
  • Suivi multisensoriel et fusion d’identification éprouvés sur le terrain
  • flexible à toute opération
  • Evolutif en déploiement
  • Ouvert aux systèmes hérités et futurs

307638285.jpg

Photos : 1 Pilatus PC-21 des FA en vol 2 cockpit PC-21@ Pilatus Aircraft 3 Radar FLORAKO@ DDPS 3 système d’engagement @ DDPS 4 Système Skyview @ Thales

 

10/12/2019

Capacité opérationnelle initiale pour le Rafale F3-R !

786986619.jpg

L’Armée de l’air française a déclaré avoir atteint la capacité opérationnelle initiale avec le nouveau standard « F3-R » du Rafale.  Cette annonce fait suite à plusieurs mois de formation des équipages et du personnel technique sur cette norme depuis son acceptation officielle en juillet dernier.

Tout en poursuivant la montée en puissance des unités opérationnelles, cette étape clé avant l'intégration début 2020 du missile METEOR de MBDA et du pod de désignation laser TALIOS de Thales permet à l’Armée de l’air d'utiliser le Rafale F3-R pour ses missions permanentes de dissuasion nucléaire, d'opérations étrangères et protection de l'espace aérien français, dite : Posture Permanente de Sûreté.

Il s'agit d'une étape majeure vers la mise en service du Rafale F3-R, qui intégrera les deux nouvelles charges utiles d'ici la fin du premier semestre 2020.

Cette norme n'est pourtant qu'une étape et confirme le potentiel de croissance du Rafale. Le développement de la norme F4 a été lancé fin 2018. Il continuera d'évoluer pour amener les avions de combat au Future Air Combat System (SCAF). Le futur standard F4 est prévu de 2023 à 2030, puis viendra le F5 de 2030 à 2040, selon le calendrier de Dassault aviation et de l’Armée de l’air.

Rappel :

Conformément à la programmation du ministère des armées, le standard « F3-R » du Rafale a été qualifié en 2018 par la direction générale de l’armement (DGA) et est entré en service opérationnel quelques mois plus tard. Au cours du premier semestre 2017, les équipes de la DGA, de Dassault Aviation, de MBDA, de Thales et les centres d’expérimentation de l’armée de l’air et de la marine ont déroulé comme prévu le calendrier des campagnes d’intégration des deux équipements majeurs du nouveau standard « F3-R ».  Il s’agit du missile « METEOR » et de la nacelle de désignation « TALIOS ».

En ce qui concerne le THALIOS :

La nouvelle nacelle développée par Thales PDL-NG (Pod de Désignation Laser de Nouvelle Génération) TALIOS doit venir remplacer l’actuelle nacelle « Damocles ». Le TALIOS doit permet de faire de la reconnaissance, de l'identification de cibles terrestres comme aériennes, et du ciblage laser au profit d'un armement guidé laser.

Les caractéristiques sont : 

  • Dernière génération de capteurs à haute résolution et de haute précision de stabilisation ligne de mire.
  • Une vision grand-angle fournissant des informations contextuelles critique et faire le pod un élément
  • Clé de l'environnement visuel du pilote tout au long de la mission.
  • L'architecture ouverte et un haut niveau d'intégration fonctionnelle.

Par ailleurs, les clients à l’exportation peuvent également opter pour la nacelle Lockheed Martin AN/AAQ « SNIPER » et le viseur de casque Elbit Systems « Targo II ».

Note : un standard F6 est également prévu, pas de date confirmée pour l’instant.

Photo : Rafale F3-R @ Dassault Aviation

18/09/2019

Air2030 : l’Eurosam SAMP/T :

DSC_8025.jpg

Second système sol-air en course pour venir équiper notre futur Défense sol-air (DSA), le SAMP/T  (Système Aérien Moyenne Portée/ Terrestre) du fabricant  Eurosam. Le système a été présenté officiellement à la presse ce mardi sur l’ancien site de missiles Bloodhound à Menzingen ou se dérouleront les essais jusqu’au 27 septembre. Tout comme son concurrent américain (voir lien) seul le radar est testé opérationnellement dans notre pays. Les données des tirs réelles des missiles sont disponibles pour armasuisse. L’équipe Eurosam a fait le déplacement avec une unité complète de tir, ainsi que l’équipe logistique d’appuis et réparation. Une occasion inédite qui a permis aux personnes présentes de se rendre compte de ce que représente le système SAMP/T au complet. Ce fut également une belle opportunité de pouvoir parler avec le personnel servant.  

DSC_8010.jpg

L’Eurosam SAMP/T :

Le SAMP/T du consortium européen Eurosam est formé par le français Thales et l’Italien Alenia en collaboration avec le missilier MBDA. Il s’agit d’un système antimissile de théâtre, conçu pour protéger le champ de bataille et les sites tactiques sensibles contre toutes les menaces aériennes actuelles et futures.  Cela prend en compte les missiles de croisière, les aéronefs avec ou sans pilote et les avions blindés. Le SAMP/T a été conçu pour fonctionner dans des environnements extrêmement encombrés (avions civils) et de contre-mesures électroniques. Le système et interopérable avec les systèmes de l’Otan.  Le SAMP/T est déjà optimisé pour les liaisons avec des avions de combat. Le système pourra fonctionner et communiquer avec n’importe lequel des avions que la Suisse choisira. Une prise de position s’effectue en 30 minutes « prêt au tir » selon les critères définis par les pays producteurs. A l’avenir, il sera possible de réduire sensiblement le temps d’installation. Pour chaque véhicule 2 à 3 hommes suffisent pour la mise en place.

Avec le SAMP/T, il n’y a pas besoin de segmenter l’espace aérien, il est conçu pour travailler avec les différents aéronefs amis en même temps. 

Radar Thales ARABEL :

DSC_8019.jpg

Le radar testé par notre pays dans le cadre des essais et l’actuel Thales ARABEL en service dans l’armée de l’Air française. Cependant, le modèle présenté dispose d’un certains nombres d’améliorations en termes de détection et de poursuite. Ces améliorations sont disponibles sur les nouvelles versions de radars produit par Thales. Cette demande particulière d’armasuise prend son sens, car l’ARABEL n’est plus produit par le fabricant. Selon la demande d’armasuisse, notre pays pourra acquérir une version optimisée au moment du choix final. Ceci ouvre la voie à la nouvelle famille des radars Thales.

L’ARABEL est un radar tridimensionnel équipé d’une antenne à balayage électronique passive rotative, tournant au régime de 60 tr/min sur 360°. Son faisceau, de 2° en azimut, peut balayer jusqu’à 70° en élévation. La fréquence d’émission, en bande X, peut varier par paliers supérieurs à 10% de la gamme de fréquences possibles. La puissance, le format du signal et les autres caractéristiques radioélectriques sont contrôlées informatiquement. Le radar peut suivre jusqu’à 50 cibles différentes et dans toutes les directions et permettre l’engagement de chacune par un missile Aster 30. Cela lui permet de contrer les attaques par saturation, y compris dans un environnement de guerre électronique. 

 Missile MBDA ASTER B1  :

IMG_3453.jpg

Le missile Aster 30 est lancé verticalement, il est équipé d’un propulseur à propergol solide de premier étage en tandem qui est largué après le lancement et le basculement et avant la phase à mi-parcours. Le missile utilise le guidage par inertie à mi-parcours, les données de mise à jour de correction de guidage étant transmises depuis le centre de contrôle des tirs basé au sol via le canal de données de liaison montante du radar. L’agilité du missile repose sur un mode de pilotage innovant dénommé : PIF-PAF : « pilotage en force - pilotage aérodynamique fort », qui donne une grande manœuvrabilité, soit :  12 g et 30 g à toutes les altitudes et une grande précision de trajectoire. Ceci grâce à des gaz au propergol, qui sont expulsés à l’avant du missile et qui augmentent la précision de celui-ci, notamment face à des cibles de petites tailles. Le missile atteint très rapidement une vitesse élevée : 3,5 secondes suffisent pour atteindre Mach 4,5. L’Aster 30 à une portée estimée à plus de 120km en horizontal et 20km vertical.

Composition d’une unité SAMP/T:  

unnamed-1.png

Le lanceur SAMP/T est monté sur un camion 8x8 portant huit conteneurs de missiles (pluieurs lanceurs peuvent être associés à une unité de tir).  Chaque missile peut être tiré à partir d'un seul lanceur en moins de dix secondes. Le système SAMP/T comprend une unité de conduite de tir basée sur le radar à balayage électronique multifonction ARABEL ou une version de la famille des radars Thales un module d’engagement comprenant des ordinateurs Mara et des consoles d’opérateur Magics. Un module générateur monté sur un camion, un camion de maintenance et de réparation et un véhicule de rechargement de missiles.

Tous les éléments habitables garantissent une total étanchéité NBC.

unnamed.png

Offre pour la Suisse :

Notre pays pourra en cas de choix en faveur du SAMP/T acquérir un radar de dernière génération, dérivé de l’ARABEL en test. Il n’est pas précisé pour l’instant, si nous recevrons la version « Next Generation » actuellement en développement. Eurosam garanti par ailleurs, que notre pays pourra bénéficier en tout temps des améliorations disponibles du système et ceci selon notre volonté.

Formation :

Le SAMP/T a été conçu initialement à une époque ou l’Armée française disposait encore de conscrits. De fait, tout a été pensé pour simplifier le travail sur le système. Différents simulateurs sont disponibles pour travailler progressivement les différentes phases tactiques, ainsi que l’engagement avec des aéronefs. La France mettra à disposition des formations pour les cadres sur ses sites avec des retours de compétences. Nos soldats pourront participer aux exercices communs avec la France et l’Italie en ce qui concerne les tirs de validation. Les échanges de données seront facilités entre les trois pays.

Offsets :

Eurosam offre une participation au sein du système SAMP/T à notre industrie. Actuellement 40 sociétés suisses ont été identiifées comme partenaires potentiels. Plusieurs sont déjà pré-sélectionnées pour produire différents sous-systèmes.

Le SAMP/T c’est :

  • Une capacité d’engament contre un large spectre de menaces (aéronefs, drones, missiles ballistiques, ICBM).
  • Souplesse d’emploi avec une couverture à 360° et une grande mobilité.
  • Empreinte logistique optimisée.
  • Interopérabilité au standard Otan et une défense aérienne intégrée.
  • Evolution constante vis-à-vis des menaces.

 Essais du Raytheon Patriot : 

http://psk.blog.24heures.ch/archive/2019/08/22/air2030%C2...

Photos : 1 Système SAMP/T radar + lanceur à Menzingen 2 Présentation/conférence 3Radar ARABEL4Maquette missile Aster 30 @ P.Kümmerling

21/05/2019

Air2030 : Essais du Rafale !

DSC_7894.jpg

Troisième appareil en compétition, le Rafale de Dassault Aviation et ses partenaires Thales et Safran a débuté ses essais dans notre pays.

Le RAFALE F-3R :  

Les deux avions biplaces sont arrivés jeudi à 11H00 sur la base aérienne de Payerne. Ces avions appartiennent aux Forces françaises. L’un d’eux provient de la base d’Istres et l’autre appartient à l’Escadron de Transformation Rafale 2/92 Aquitaine (ETR2/92) basé à Saint-Dizier.

DSC_7866.jpg

Le RAFALE est un avion de combat de nouvelle génération doté d’une avionique numérique avec système HOTAS. Il est entré en service au sein de l’Armée de l’Air française en 2006. Depuis cette date, le RAFALE a constamment évolué et a atteint une pleine maturité.

Le RAFALE a été le premier avion conçu dès le début  de sa conception pour effectuer tous les types de mission pendant un même vol.  C’est sa capacité OMNIROLE. Cela est possible grâce à sa capacité d’emport (il peut emporter son propre poids à vide en charges utiles) et à la conception de son système d’armes qui assiste le pilote dans la gestion simultanée des différentes missions : Police aérienne, supériorité aérienne, reconnaissance, interdiction aérienne, suppression de la défense aérienne ennemie (SEAD), soutien aérien rapproché (CAS) et, en configuration embarquée, attaque maritime.

L’avionique comprend trois écrans couleurs principaux, un viseur tête haute (HUD) ainsi qu’un viseur de casque. Les deux écrans latéraux sont tactiles et sont utilisés dans les phases préparatoires du vol  (préparation du système d’arme, gestion des capteurs et des données). L’écran central est celui qui présente au pilote les éléments d’information fusionnées des différents capteurs et sources extérieures pour l’élaboration de sa  situation tactique; air-air, air-sol, reconnaissance ainsi que l’environnement. Chaque RAFALE peut lui-même partager toutes ses données avec l’ensemble de la chaine de commandement et avec ses équipiers (Network centric warfare).

L’avion est équipé d’un système de suivi de terrain extrêmement evolué permettant un vol securisé quelque-soient le relief et les conditions météorologiques, tout en utilisant son radar pour la surveillance de l’espace aérien. En outre l’avion est doté d’un système automatique pour éviter les collisions avec le sol (AGCAS, Automatic Ground Collision Avoidance System) ainsi que d’un « panic button » qui permet un rétablissement automatique en cas de perte d’orientation du pilote.

La nouvelle version du RAFALE F3-R, qui est testée en Suisse, dispose du viseur de casque TARGO II de l’Israélien Elbit Systems et de la capacité METEOR pour la défense air-air à très grande distance. L’avion est équipé d’une liaison de données Link16 Otan de dernière génération (MIDS). Ce nouveau standard du RAFALE est entré en service au début de cette année et prend en compte les retours d’expérience opérationnels.

 

Les systèmes du RAFALEF-3R testés en Suisse: 

DSC_456.jpg

Radar AESA : 

Le Rafale est équipé d'un radar « RBE2 » à balayage électronique actif « AESA » conçu par Thales. Le système permet de traiter 40 cibles simultanément et d’en engager 8. Le radar RBE2 peut être couplé au système de suivi de terrain en fournissant une cartographie du terrain devant l’avion.

OSF :

Le système OSF (optronique secteur frontal) de Thalès du RAFALE, () est un système de détection et de poursuite passif composé d'une voie infrarouge bi-bande (3-5 µm et 8-12 µm), capable de détecter et de poursuivre les cibles à plus de 100 km, et d'une voie télévision capable d'identifier une cible, d'en détecter l'armement à plus de 50 km. Le capteur TV est couplé à un télémètre laser. Ce système présente le grand avantage de permettre une identification visuelle à 50 kilomètres ; idéale pour des missions de la police aérienne. Il permet aussi d’engager des cibles en toute discrétion (radar sur veille)

SPECTRA :

Le système de guerre électronique développé par Thales « Spectra » (Système de protection et d'évitement des conduites de tir pour Rafale) est le système électromagnétique de détection, d'autoprotection et d’engagement en mode passif du RAFALE. Le RAFALE possède trois détecteurs radar de 120° (deux antennes devant les plans-canard, une antenne en haut de dérive), trois détecteurs d'alerte laser (DAL) de 120° (deux antennes sur le fuselage en bas du pare-brise, une antenne logée dans un barillet sur la dérive) et deux détecteurs de départ missile (DDM) infrarouge (deux antennes logées dans un barillet sur la dérive).

Le système assure une veille dans tous les spectres sur 360° en détectant une source avec une précision de moins de 1° (suffisante pour les attaquer ou les brouiller individuellement), en l'identifiant par comparaison des signaux à une banque de données, en hiérarchisant et en localisant les menaces en mode interférométrique, en les fusionnant avec les pistes détectées par d'autres capteurs (radar, OSF), en les présentant au pilote et en lui proposant des contre-mesures. Le Rafale possède 3 brouilleurs (2 antennes à balayage électronique actives situés devant les entrées d'air et un à la base de la dérive), 4 lance-leurres modulaires à éjection vers le haut (placés à la jonction de l'aile et du fuselage) et 4 lance-paillettes

L’avion dispose également du système SAASM (Selective availability anti-spoofing module). Ce dernier permet d'éviter le brouillage électronique du GPS par l'adversaire

Nacelles  :

TALIOS :

La nouvelle nacelle développée par Thales PDL-NG (Pod de Désignation Laser de Nouvelle Génération) permet de faire de la reconnaissance, de l'identification de cibles terrestres comme aériennes, et du ciblage laser au profit d'un armement guidé laser. Le TALIOS dispose de la dernière génération de capteurs à haute résolution et de haute précision de stabilisation ligne de mire. Une vision grand-angle. Le pod TALIOS est conçu comme un système «plug & lutte» pour l'intégration de tous les combattants actuels et futurs.

SNIPER :

A l’exportation le Rafale F3-R offre églement la nacelle AN/AAQ-33 « Sniper » de Lockheed Martin qui assure la désignation de cible pour des bombes à guidage laser, la nacelle Sniper peut aussi servir de nacelle de reconnaissance tout temps grâce à son FLIR et un caméra CCD embarquée.

AEROS :

La nacelle de reconnaissance de dernière génération, la nacelle AEROS : (Airborne Reconnaissance Electro Optical System) est 100% numérique, A l’avant, le bloc optique du capteur HA/MA (haute altitude/moyenne altitude) permet la prise de vue photographique à moyenne portée ou bien à longue portée et distance de sécurité. L’AREOS Reco NG a des portées d’identification de plusieurs dizaines de kilomètres. A l’arrière de l’AREOS Reco NG, le capteur basse altitude permet de photographier d’horizon à horizon à seulement 60 mètres du sol et à des vitesses très élevées. Qu’elle travaille en mode «ponctuel », «couverture de zone» ou encore «suivi d’itinéraire », la nacelle fonctionne automatiquement et connaît en permanence sa position précise dans l’espace, ce qui lui permet de gérer, en roulis et en tangage, le pointage des optiques.

Radios & IFF :

Le Rafale dispose de postes radio utilisables en clair comme en mode évasion de fréquence lui permettant d’être complètement interopérable avec les systèmes de communication de l’Otan, ainsi que d'un nouvel IFF mode 5/S.

Données techniques & armement du Rafale F-3R :

Deux moteurs SAFRAN M88 de 50kN et 75kN avec postcombustion. Masse à vide 10t maximale 24’500kg. Vitesse Mach1,8. Mode SuperCroisière Mach 1,4. Plafond pratique 15’240m. Vitesse ascensionnelle supérieure à 280m/s. Rayon d’action 1’759km.

Armement

14 points d’emport : 1 canon Nexter DEFA 791B de 30mm. Air-air : missiles MICA (EM et IR), METEOR. Air-sol : missile SCALP-EG. Anti-navire : missile AM39 Exocet BlockII. Bombes : AASM « HAMMER », GBU-12, GBU-16, GBU-24, MK-82, BLU-111/B

La version disponible en 2025 : 

Le Rafale F-4 :

unnamed.jpg

Si notre pays devait opter pour cet avion, le standard livré en 2025 serait le F-4. Le standard F4 comprendra entre autres un nouveau système de Pronostic et d’Aide au Diagnostic introduisant des capacités de maintenance prédictive. D’autres optimisations de la maintenance sont égalementprogrammées, avec notamment des solutions basées sur le Big Data et l’intelligence artificielle. L’avion sera également doté de la nouvelle génération du missile «MICA» (MICA-NG). Développés en deux versions avec autodirecteur infrarouge (IR) et électromagnétique (EM). Cette évolution de l’avion doit permettre d’amener celui-ci pleinement dans le combat en réseau avec de nouvelles liaisons satellite et intra-patrouille, serveur de communication, radio logicielle. De nouvelles fonctions seront également développées pour améliorer les capacités de l’avion comme l’évolution des capteurs et du radar, de l’optronique secteur frontal (OSF), capacités du viseur de casque.

L’architecture ouverte du système d’arme RAFALE permettra d’intégrer progressivement ces nouvelles capacités à partir de 2020. On notera également une nouvelle architecture du cockpit avec vraissemblablement un grand écran. 

Photos : 1 & 3 Rafale à Payerne 2 Conférence de presse @ P.Kümmerling

 Liens sur les essais précédents :

http://psk.blog.24heures.ch/archive/2019/04/30/air2030-es...

http://psk.blog.24heures.ch/archive/2019/04/12/air3020-l-...

10/04/2019

Début des essais pour le Merlin HM.2 ASaC !

pic_0.jpg

Le premier hélicoptère Leonardo AW101 Merlin HM.2 équipé du système de surveillance et de contrôle aéroporté Crowsnest (ASaC) vient de terminer son premier vol. Le maître d’oeuvre Lockheed-Martin UK, a confirmé que l’appareil d’essai avait décollé de l’installation Yeovil de Leonardo Helicopters équipée du système Crowsnest le 28 mars dernier.

Le programme « Crowsnest » permettra à la Royal Navy de retrouver une capacité d'alerte et de contrôle (AEW & C) aéroportée pour sa flotte de surface, en mettant l'accent sur les transporteurs de classe Queen Elizabeth. Le nouveau système devrait atteindre sa capacité opérationnelle initiale en 2020 et constituera un élément essentiel de la future capacité de projection de puissance de la marine (CEPP). Dans le passé, cette capacité AEW & C était fournie par la flotte Sea King ASaC.7 (SKASaC) jusqu’à la retraite des aéronefs en 2018.

EH-219h.jpg

Le Thales « Searchwater » :


Le système comprend un radar Doppler à impulsions de haute puissance intégré aux systèmes Mk XII IFF, ESM et un système de navigation INS / GPS. Une interface homme-machine avancée, spécialement conçue par et pour les opérations ASaC, utilisant deux consoles d’opération, il assure une interaction opérateur efficace.

À partir de son point de vue unique, le système fournit: 
· Avertissement à long terme contre les attaques à haute et basse altitude sur terre, mer et air 
· Direction d'interception à grande distance des avions de combat utilisant un système de navigation INS / GPS haute résolution 
· Une unité C2 de défense aérienne sécurisée autonome 
· Un système de surveillance maritime sophistiqué permettant la détection de très petites cibles fugitives, telles que les jet-skis et les périscopes, en cas de bruit de fond important 
· Une extension des systèmes de surface pour fournir le ciblage à l'horizon, la recherche et le sauvetage et la surveillance côtière 
· Opérations spéciales de maintien de l'ordre 
En conditions de combat, il a été démontré que le système offrait une capacité d’effet «mini-JSTARS» avec une souplesse de réponse pouvant être commutée instantanément de Force Protection (Sea Shield) à Force Projection (Sea Strike) via une liaison de données sécurisée (Net).

Le Merlin HM.2 Crowsnest utilise des systèmes et du matériel de mission améliorés mis au point à l'origine pour la flotte de SKASaC, notamment le radôme distinctif latéral qui abrite le radar de Thales « Searchwater » et pivote sous l’aéronef pendant le vol depuis sa place initiale bâbord. Le radar à balayage mécanique offre une capacité de détection et de poursuite aérienne, maritime et terrestre à longue portée, ainsi que des mesures de soutien électronique entièrement intégrées. Le radar et le système de mission « Cerberus » associé, également fourni par Thales, ont évolué pour le Merlin HM.2 afin d'inclure de nouveaux modes radar,  ainsi que des améliorations de l'interface homme-machine, telles que la technologie à écran tactile. 

Un total de 10 systèmes « Crowsnest » a été commandé dans le cadre d'un contrat de 269 millions de livres sterling (351,7 millions de dollars) attribué à Lockheed Martin UK en 2017. Les 30 Merlin HM.2 de la Royal Navy, précédemment mis à niveau par Lockheed Martin UK dans le cadre du Programme de maintien de la capacité Merlin seront modifié par Leonardo Helicopters à Yeovil afin de garantir que les kits d'adaptation au rôle du « Crowsnest » puissent être intégrés.  

EH-494h.jpg

Photos :AW101 Merlin HM.2 ASaC @ Leonardo