12/04/2019

Air2030: l’Airbus Eurofighter « Typhoon » aux essais !

DSC_7816.JPG

Nous voici entré dans la phase tant attendue des essais en vol depuis les installations de la base aérienne de Payerne des avions de combat en concours. Le nouvel avion devra venir assurer la pérennité de nos Forces aériennes en venant remplacer dès 2025 les derniers Northrop F-5 E/F « Tiger II » et la flotte de Boeing F/A-18 C/D « Hornet.

Présentation factuelle : 

Pour chacun des candidats vous trouverez ici une présentation factuelle de l’avion en test et de l’évolution de celui-ci dans le standard qui sera disponible à la livraison en 2025. L’objectif est de faire connaitre l’avion actuellement en test de manière égale et impartiale vis-à-vis de ses concurrents. Il n’est pas question de faire ici l’évaluation de chacun, celle-ci est le fait des spécialistes d’armasuisse et des Forces aériennes, qui par ailleurs disposent des données confidentielles sur chacun des candidats. 

Rappelons également, que le choix d’un avion n’est pas que technique, il s’agit d’un partenariat sécuritaire qui englobe des enjeux stratégiques. Le choix du futur partenariat d’entraînement avec une force aérienne amie, un partenariat dans le cadre de la production d’éléments de l’avion et des engagements industriels à 100% à travers l’industrie civile (Offsets). Nous devons parler de « paquet global » en ce qui concerne le choix final, mais nous y reviendrons.

DSC_7767.JPG

Etat des essais :

La première phase de tests en simulateur chez les constructeurs a permis de vérifier le bon fonctionnement des divers systèmes de chaque appareil, selon un scénario précis. Par exemple : on vérifie, si les alarmes fonctionnent correctement. En plus des simulateurs, les constructeurs ont dû répondre à diverses questions concernant la maintenance et la logistique.

La phase d’essais en vol en Suisse, 8 au total, doit permettre de vérifier les données de l’avion, comme sa vitesse, la portée radar par exemple. Il s’agit également de tester les différents capteurs de l’avion en situation réelle. Les éventuels faux échos qui pourraient survenir sur le radar, générés par les montagnes. Pour cela des missions spécifiques sont organisées. La dernière est libre et doit permettre au candidat de montrer des spécificités propres à l’avion.

Toutes ces données sont enregistrées sur l’enregistreur de vol qui permet ensuite d’analyser chaque phase des essais en détail. Les pilotes suisses sont en place arrière sur les avions biplaces et suivront les appareils monoplaces à distances (F-35 & Gripen E). Selon armasuisse, il est important que les avions puissent donner le maximum de leurs capacités durant les 8 vols. Cette possibilité est due au fait que ce sont les pilotes des avions respectifs qui effectuent la manœuvre. Avec des pilotes suisses, il aurait fallu plus de temps, afin que ceux-ci apprivoisent chaque modèle. En Suisse, une phase d’observation de la maintenance et de sa facilité est également au menu des essais.

DSC_7824.jpg

 L’Airbus Eurofighter T2 (FGR.4) « Typhoon II » :

Les deux avions (un biplace et un monoplace) qui sont arrivés le 9 avril sur la base de Payerne, sont des Eurofighter T2 ou FGR.4 (dénomination anglaise) appartenant au 41ème Squadron de la RAF basé à Conningsby. Il s’agit du standard le plus récent disponible pour l’Eurofighter.

L’Eurofighter FGR.4 (T2) est un avion de combat de génération 4++ doté d’une avionique et de systèmes d'armes entièrement numériques avec système HOTAS. Le Typhoon est conçu pour effectuer les missions aériennes suivantes: supériorité aérienne, interdiction aérienne, suppression de la défense aérienne ennemie (SEAD), soutien aérien rapproché (CAS) et attaque maritime.

Doté d’une avionique avec trois écrans multifonctions, le système intégré de gestion de la mission et de l’armement de l’Eurofighter fusionne les données fournies par tous les divers senseurs.  L’interface homme-machine optimisée «Carefree Handling» le décharge de certaines tâches. De plus, les afficheurs multifonctions offrent différents modes de pilotage automatique et un système de commande vocale permettent au pilote de se concentrer entièrement sur sa mission. Le pilote dispose du viseur de casque « Stryker II » de BAe Systems. Liaison de données tactique Link16 de l’Otan. 

eurofighter,raf,armasuisse,nouvel avion de combat,air2030,payerne,ddps,force aérienne suisse,blog défense,aviation militaire,les nouvelles de l'aviation,romandie aviation,aviation francophone

Les systèmes de l’Eurofighter : 

Le système AIS :

Le système AIS (Attack and Identification System) réalise la fusion des informations remontant des multiples capteurs embarqués et des capteurs externes via le système MIDS (Multifunction Information Distribution System). C'est par ce système que l'on contrôle les émissions électromagnétiques de l’avion pour réduire sa détectabilité (système EMCON - EMission CONtrol).

Le radar CAPTOR :

L’avion est doté du radar ECR-90 CAPTOR-M à antenne mécanique de troisième génération, opérant en bande X qui permet à la fois de faire une recherche sur grande distance et de l’illumination et de la poursuite. Il lance automatiquement une poursuite lors de scan (Track while scan – TWS) pour une liste de cibles dont le nombre exact reste classé. Il est possible de l’asservir directement sur le casque du pilote, les données obtenues pouvant ensuite être utilisées pour l’armement air-air courte portée tel que l’ASRAAM. Le système d'identification ami (IFF) est intégré dans le système CAPTOR.

Le système PIRATE (IRST) :

Le PIRATE, pour Passive Infra Red Airborne Tracking Equipment (IRST), est un équipement de deuxième génération d’imagerie infrarouge. Le PIRATE intègre à la fois une capacité FLIR (imagerie infrarouge frontale) et l’IRST (veille et poursuite infrarouge). Le système fait appel à un capteur infrarouge très sensible qui opère dans des longueurs d’onde de 3 à 11 µm en deux bandes. Cela permet aussi bien la détection des panaches de gaz d’échappement chauds des moteurs à réaction que la détection de la surface de chauffe causée par la friction avec l'air de l’atmosphère. Le refroidissement du capteur permet de détecter même de petites variations de température à longue portée. L’utilisation de techniques de traitement d’image améliore encore les données recueillies, ce qui donne presque une image haute résolution des objectifs. Les images obtenues via ce système peuvent être affichées sur l’un des afficheurs multifonctions intégrés dans le cockpit. En outre, l’image peut être superposée à la fois sur le viseur de casque et sur l’afficheur tête haute.

Le système DASS :

L’Eurofighter dispose d’une architecture modulaire pour le système défensif, le DASS(Defensive Aids Sub System). Toutes les parties du DASS sont contrôlées par un DAC (Defensive Aids Computer). Le DAC offre une capacité entièrement automatisée pour analyser et répondre à toute menace que l’Eurofighter pourrait rencontrer. Pour fournir ces informations essentielles sur la situation extérieure, le DASS s’appuie sur différents sous-systèmes comme le détecteur d’alerte radar et son équivalent optronique, le Détecteur d’Alerte Laser (DAL) qui prévient de toute illumination lié à des télémètres lasers ou autres systèmes de guidage laser. Le Détecteurs de Départ Missiles (DDM) qui fournit des informations à 360° sur toute approche de missile, donnant ainsi le temps nécessaire pour engager des manœuvres d’évitement, en s’appuyant par exemple sur des leurres.

Nacelle ATFLIR:

L’appareil est équipé du module de ciblage de précision Raytheon AN/ASQ-228 ATFLIR (infrarouge à visée avancée de ciblage avancé). L’ATFLIR consiste en un réseau de plans focaux fixes de 3 à 5 microns ciblant en mode FLIR, et qui comprend un suiveur laser à haute puissance pompé par diode de BAE Systems Avionics, une caméra de navigation FLIR et de télévision CCD de BAE Systems Avionics.


Données techniques & armement du FGR.4 (T2) : 

Deux moteurs Eurojet EJ200-3A de 60kN et 90kN avec postcombustionMasse à vide 11’000kg, maximale 21’000kg, vitesse Mach 2.0, Mach 1.5 en mode SuperCruise, plafond pratique 16'800 m, vitesse ascensionnelle plus de 250m/s, rayon d’action 1’852km.

Armement (12 points d’emport) : 1 canon Mauser BK-27, Missiles air-air : ASRAAM, IRIS-T, AIM-9X, AMRAAM AIM-120, METEOR. air-sol : Brimstone, Storm-Shadow, Taurus. Anti-radar : HARM, ALARM. Bombes : GBU 10/16/24,  Enhanced Paveway, JDAM. Nacelle de désignation : Litening.

La version disponible en 2025 :

Eurofighter T3A/B Block10/15:

IMG_3001.JPG

Si notre pays devait opter pour l’Eurofighter, le standard livré en 2025 serait sensiblement différent. Il s’agirait du T3A/B Block10/15. Ce standard disposera du radar AESA CAPTOR-E à balayage électronique. L’arrivée du CAPTOR-E permet grâce à son antenne AESA d’effectuer des tâches multiples simultanément. Le nouveau radar conserve les principales caractéristiques de l'architecture du radar CAPTOR-M actuel, mais, il est doté d’une antenne AESA en lieu et place de l’actuelle antenne mécanique. Il est prévu d’exploiter la maturité du système actuel et d’y adjoindre le mode AESA. Le T3 disposera également d’une nouvelle architecture en terme d’avionique avec un grand écran multifonctions spécifiquement adapté à la guerre en réseau (Electronic Warfare) produit pas Bae Systems. La puissance électronique sera d’ailleurs démultipliée à cet effet.

Note : Si les avions présentés sont anglais, se sont les allemands qui ont le leadership pour gérer les discussions avec la Suisse.

 

eurofighter,raf,armasuisse,nouvel avion de combat,air2030,payerne,ddps,force aérienne suisse,blog défense,aviation militaire,les nouvelles de l'aviation,romandie aviation,aviation francophone

Photos : 1 & 2 Eurofighter FRG.4 de la RAF à Payerne 3 Pilotes d’essais suisse à gauche et pilote anglais @ Pascal Kümmerling 4 Eurofighter en vol de nuit Le nouveau cockpit du T3 avec grand écrans@BAe

11/04/2019

L’US Navy commande 24 E-2D !

2117775147.jpg

La US Navy a passé commande à Northrop-Grumman un contrat d’achat d’une valeur de 3,2 milliards de dollars un total de 24 avions d’alerte avancée et de contrôle E-2D « Advanced Hawkeye ». Il s'agit du second contrat d'approvisionnement pluriannuel attribué à Northrop Grumman pour le E-2D. L'USN a attribué le premier contrat en 2014 pour la production de 25 avions E-2D, qui a ensuite été porté à 26 avions par le Congrès.

Le Hawkeye E-2D « Advanced » :

Les systèmes du E-2D représentent un bond de plusieurs générations dans la technologie des systèmes embarqués d’alerte lointaine et doit permettre de s’adapter aux menaces d’aujourd’hui et de demain, en s’intégrant totalement dans les nouveaux systèmes, mis en oeuvres par l’US Navy.  Que ce soit en matière de bâtiments de surface que de nouveaux appareils tels : les Super Hornet et le F-35.

Le Hawkeye E-2D « Advanced » dispose d’un grand nombre de nouveautés avec un radar AESA AN/APY-9 qui remplace l’ancienne antenne de type mécanique, le radar permet une couverture totale à 360° et un suivi complet air et mer. L’appareil dispose également d’une nouvelle motorisation, soit le Rolls-Royce T-56-A-427A. Un cockpit entièrement numérique, d’un nouveau système d’identification ami/ennemi, de nouveaux postes de travail tactique, ainsi que d’une nouvelle architecture électronique et de communication couplée à une liaison de données. 

141009-N-ZF498-008.jpg

Photos : E-2D « Advanced Hawkeye »@ Northrop-Grumman

Nouveau record pour le Gulfstream G650ER !

C2653B3C-BBDE-473F-9D21-745EB6DA15C3.jpeg

Habitué des records, l’avionneur Gulfstream a établi un nouveau record de vitesse avec son G650ER ultra-longue portée, et a ainsi établi un nouveau record pour le vol en jet d'affaires. 

Le 29 mars, le G650ER a volé de Singapour à Tucson en Arizona, soit un vol d’une durée de 15 heures et 23 minutes, éclipsant le précédent record établi par le Bombardier Global 7500 de 44 minutes. Le Gulfstream G650ER a quitté l'aéroport de Changi à 29h35, heure locale, le 29 mars, et est arrivé à Tucson à 17h16 heure locale, couvrant les 8’379 nm à une vitesse sol moyenne de 626 milles par heure.

Le G650ER :

Le G650ER (Extented Range) est directement dérivé de l’actuel G650, mais celui-ci peut parcourir 7’500 nm (13’890km) à une vitesse de croisière de Mach 0,85. Cette nouvelle version permet de relier d’une traite New York à Dubaï par exemple.  L’avion reprend par contre les mêmes spécificités que le G650, soit un cockpit  nouvelle génération doté d’un Enhanced Vision System II couplé à un Head-Up Display (HUD). Equipé d'un système en configuration de gestion de vol Triplex, la descente d'urgence peut s’effectuer en mode automatique, il dispose d’un radar 3D météorologique. Doté de moteurs Rolls-Royce BR725 de dernière génération, plus silencieux et moins gourmand en kérosène, il se montre 25 % plus économique que la génération précédente. Equipé d'un système en configuration de gestion de vol Triplex, la descente d'urgence peut s’effectuer en mode automatique, il dispose d’un radar 3D météorologique. Doté de moteurs Rolls-Royce BR725 de dernière génération, plus silencieux et moins gourmand en kérosène, il se montre 25 % plus économique que la génération précédente.

Les ingénieurs de Gulfstream ont  accordé une attention particulière à l'environnement de la cabine. En fait, ils l'ont conçu à partir de l'intérieur. Plus long, plus large et plus haute que n'importe quelle cabine de sa catégorie. L’avion peut être doté de confortables chambres à couchers,  la cabine peut être configurée avec une table de quatre places pour conférence avec deux sièges supplémentaires à travers le couloir, pour les repas ou les réunions et  bénéficient de sièges plus larges. Douze variations sont possibles en fonction des désirs du client. 

4E683C6E-B17A-401A-B9F4-9A7552334433.jpeg

Photos : 1 G650ER 2  Intérieur @ Gulfstream

 

10/04/2019

Début des essais pour le Merlin HM.2 ASaC !

pic_0.jpg

Le premier hélicoptère Leonardo AW101 Merlin HM.2 équipé du système de surveillance et de contrôle aéroporté Crowsnest (ASaC) vient de terminer son premier vol. Le maître d’oeuvre Lockheed-Martin UK, a confirmé que l’appareil d’essai avait décollé de l’installation Yeovil de Leonardo Helicopters équipée du système Crowsnest le 28 mars dernier.

Le programme « Crowsnest » permettra à la Royal Navy de retrouver une capacité d'alerte et de contrôle (AEW & C) aéroportée pour sa flotte de surface, en mettant l'accent sur les transporteurs de classe Queen Elizabeth. Le nouveau système devrait atteindre sa capacité opérationnelle initiale en 2020 et constituera un élément essentiel de la future capacité de projection de puissance de la marine (CEPP). Dans le passé, cette capacité AEW & C était fournie par la flotte Sea King ASaC.7 (SKASaC) jusqu’à la retraite des aéronefs en 2018.

EH-219h.jpg

Le Thales « Searchwater » :


Le système comprend un radar Doppler à impulsions de haute puissance intégré aux systèmes Mk XII IFF, ESM et un système de navigation INS / GPS. Une interface homme-machine avancée, spécialement conçue par et pour les opérations ASaC, utilisant deux consoles d’opération, il assure une interaction opérateur efficace.

À partir de son point de vue unique, le système fournit: 
· Avertissement à long terme contre les attaques à haute et basse altitude sur terre, mer et air 
· Direction d'interception à grande distance des avions de combat utilisant un système de navigation INS / GPS haute résolution 
· Une unité C2 de défense aérienne sécurisée autonome 
· Un système de surveillance maritime sophistiqué permettant la détection de très petites cibles fugitives, telles que les jet-skis et les périscopes, en cas de bruit de fond important 
· Une extension des systèmes de surface pour fournir le ciblage à l'horizon, la recherche et le sauvetage et la surveillance côtière 
· Opérations spéciales de maintien de l'ordre 
En conditions de combat, il a été démontré que le système offrait une capacité d’effet «mini-JSTARS» avec une souplesse de réponse pouvant être commutée instantanément de Force Protection (Sea Shield) à Force Projection (Sea Strike) via une liaison de données sécurisée (Net).

Le Merlin HM.2 Crowsnest utilise des systèmes et du matériel de mission améliorés mis au point à l'origine pour la flotte de SKASaC, notamment le radôme distinctif latéral qui abrite le radar de Thales « Searchwater » et pivote sous l’aéronef pendant le vol depuis sa place initiale bâbord. Le radar à balayage mécanique offre une capacité de détection et de poursuite aérienne, maritime et terrestre à longue portée, ainsi que des mesures de soutien électronique entièrement intégrées. Le radar et le système de mission « Cerberus » associé, également fourni par Thales, ont évolué pour le Merlin HM.2 afin d'inclure de nouveaux modes radar,  ainsi que des améliorations de l'interface homme-machine, telles que la technologie à écran tactile. 

Un total de 10 systèmes « Crowsnest » a été commandé dans le cadre d'un contrat de 269 millions de livres sterling (351,7 millions de dollars) attribué à Lockheed Martin UK en 2017. Les 30 Merlin HM.2 de la Royal Navy, précédemment mis à niveau par Lockheed Martin UK dans le cadre du Programme de maintien de la capacité Merlin seront modifié par Leonardo Helicopters à Yeovil afin de garantir que les kits d'adaptation au rôle du « Crowsnest » puissent être intégrés.  

EH-494h.jpg

Photos :AW101 Merlin HM.2 ASaC @ Leonardo

Des Falcon 7X pour la RAAF !

E6454759-BB0C-486D-B224-13F7D6BBDC28.jpeg

La Royal Australian Air Force va louer  trois jets d’affaires Dassault 7X pour le transport  VVIP. Ces appareils vont venir remplacer la flotte actuelle de trois Bombardier CL604 « Challengers » âgés de 16 ans, eux-mêmes en location a déclaré le Département de la défense australien.

Les nouveaux appareils permettront de réduire les coûts d’exploitation tout en offrant des capacités de communication modernes, ainsi qu’une autonomie et une endurance accrues. Les Falcon 7X entreront en service d’ici le troisième trimestre de 2019.

Le Falcon 7X :

Le Falcon 7X est le premier jet d'affaires à intégrer un système de vol de contrôle numérique, qui fournit une enveloppe avec une plus grande sécurité. L'avion est également livré en standard avec le poste de pilotage EASy. Le système Cockpit EASy de nouvelle génération comprend : un mini-manche latéral, le Digital Flight Control System, le système Primus Epic d’Honeywell, l’automanette et un affichage tête haute optionnel Collins et le système de vision améliorée EFVS (Enhanced Flight Vision System).

Le Falcon 7X est alimenté par trois moteurs Pratt & Whitney PW307A Canada de 6402 lb (28,5 kN) de poussée chacun (SL ISA+17 °C) et offre une efficacité de carburant supérieure de 15 à 30% face aux autres aéronefs de la même catégorie.

Le Falcon 7X vole plus vite, seul jet d’affaires long-courrier certifié par l’AESA et la FAA pour décoller de l’aéroport de London City, le Falcon 7X possède un rayon d’action de 5 950nm (11 000km) lorsqu’il transporte huit passagers à Mach 0.80.Il ouvre une nouvelle ère d’innovation, de confort et de performances. Le Falcon 7X parcourt 11 000 km (5950 nm) sans escale et relie Paris à Tokyo,  New York à Dubaï, Berlin à Los Angeles,  Johannesburg à Londres, il est le seul jet d’affaires long-courrier certifié par l’AESA et la FAA.

 

Photo : Falcon 7X @ Dassault Aviation